Large scale Power to X technologies

For Industry decarbonisation

thyssenkrupp Uhde GIZ|30.01.22| T.M.QUANG

engineering.tomorrow.together.

thyssenkrupp – a global corporation with

~ €34 bn sales, over 100,000 employees &

presence in 56 countries with ~1,100 locations

thyssenkrupp's portfolio

"Group of companies"

UHD = Uhde (Chemical and Process Technologies)

1. Business Units from former Plant Technology: Cement Technologies, Uhde (Chemical & Process Technologies) und Mining Technologies | 2. Transfer from Materials Services segment | 3. Transfer from Automotive Technology segment | 4. Transfer from Steel Europe segment | 5. thyssenkrupp Carbon Components | 6. Reinvestment TK Elevator

Uhde is the "pure play" in

chemical plants & processes

Founded 6 April 1921

1st Ammonia plant in 1928

Serving a broad spectrum of industries

with an international footprint of around 4,500 employees

¹ Separate entity but close cooperation

Thyssenkrupp: Two missions in the energy transition

2050 KLIMANEUTRAL CLIMATE NEUTRAL

-30% CO2 reduction by 2030 Green hydrogen and chemicals

1 GW electrolysis manufacturing

10 GW installed in the chemical industry

Drivers for Green Hydrogen: Scale up technology for efficient operations

Substitution of grey hydrogen in existing value chains already requires gigawatt scale

Scaling up electrolysis plants shows significant cost

Typical cost down opportunities

Only at gigawatt scale global transport chains operate efficiently

Power-to-X applications

prices

3

reduction

Electrolysis connects power sector with fuels and gases markets providing benefit to both

... for realizing large-scale sustainable green value chains

Our standardized high performance product and its key features

Output from a 20 MW_{el} module

Hydrogen production rate	4,000 Nm ³ /h*
Hydrogen pressure at AWE module	0.300 barg
Hydrogen purity, saturated with H_2O at 40 °C	99.9 % (v/v)
Oxygen production rate	2,000 Nm ³ /h*
Oxygen pressure at AWE module	0.200 barg
Oxygen purity, saturated with $\rm H_2O$ at 40 °C	99.5 % (v/v)

Operability

The turn dov	vn ratio of the electrolysis modules	1	0 %	
The turn up	ratio of the electrolysis modules	1	00 %	
Ramp-speed	l (up and down, hot system)	S	uitable to renewable nergy sources	ò
Start-up time	es: Cold to 100 % load	4	0 – 60 min.	
Availability		u	p to 98 %	

Power consumption at start of life (DC)

Electrolyzer, at max. capacity

4.5 kWh/Nm³ (DC)

Power consumption at start of life (AC)	
 System at nominal capacity: incl. transformation / rectifying incl. hydrogen compression to 30 bar_g incl. all other electrical consumers within battery limits (purification of 99,999 %) 	4.9 kWh/Nm ³ (AC)

 * Nm³ is defined as 1 m³ of gas (100%) at 273.15 K and 1.013 bar

Harmonized and specific nomenclature

Select Thyssenkrupp nucera green hydrogen milestones timeline solidifies position as an industry leader

more to come

Ammonia industry

experience in the construction of ammonia plants

We offer

- Outstanding management expertise for large-scale projects
- Modern global purchasing strategies
- Best-in-class processes such as uhde[®] dual pressure process fostered by continuous R&D efforts
- Fully integrated and standardized green ammonia plants
- Technology and EP(C) + S

This enables us to supply you with optimum solutions offering maximum cost efficiency around the globe – reliable, sustainable and eco-friendly.

Latest track records 2017-2020

our experience goes back to 1921 with more than 130 plants built and about 50mln tpa ammonia capacity

Ammonia market development

Fossil-fuel based

Fossil-fuel based with CCS

2 mln tons p.a.

installed ammonia capacity add-on

Fossil fuel based

for ammonia primarily used for fertilizers production (80%)

180 mln tpa

ammonia capacity

<2% global CO₂

Emission contribution

Renewable energy based

>8 mln tons p.a.

installed ammonia capacity add-on expected

RE based

for ammonia for fertilizers, but primarily as maritime fuel and as energy carrier

> 400 mln tpa

ammonia capacity in 2050

D CO₂ Emission contribution

Ammonia plant development and our contribution

Fossil-fuel based

Fossil-fuel based with CCS

130

ammonia plants primarily as one-stop-shop

600 to 3,300mtpd

ammonia capacity range

Tailor-made

600

electrolysis plants primarily as one-stop-shop

1 GW

manufacturing capacity

Standardized

A Market Ready Solution:

- Fully modularized and standardized
- Integrated offering
- RHAMFS[©] to optimize integration
- Highest flexibility
- Easy scale-up to 5,000 mtpd
- Worldwide supply chain
- One-stop-shop
- World wide foot print and service

9-10MWh/t

Specific consumption

5 GW manufacturing capacity

50 to 5,000mtpd

ammonia capacity range

Standardized

Design and design requirements

Uhde® green Ammonia

20/50 and 120/300 being fully modularized and standardized ready for the market, tailor-made up to 5000mtpd

Carbon2Chem® in Duisburg/Germany

From idea to commercial implementation

Carbon2Chem® supported by

BMBF funding numbers 03EK3037 to 03EK3043

Carbon2Chem^{®,} Duisburg/Germany From idea to commercial implementation

Carbon2Chem® supported by Federal Ministry of Education and Research

BMBF funding numbers 03EK3037 to 03EK3043

RHAMFS © - Sustainable PtX solutions founded on technology know-how and further harmonized to master the unique challenges of renewable value chain

- Green Hydrogen
- Green Ammonia ٠

- ٠

engineering. tomorrow. together.

