

Green hydrogen benefits & global development with implications on Vietnam

Dr Nguyen Dinh, Global Head of Hydrogen, OWC, ABL Group

21 February 2023

ABL-GROUP.COM Further information & contact: https://abl-group.com/renewable-energy-engineering-consultants/hydrogen/

Presentation Overview

Overview of ABL Group & Hydrogen - ammonia offerings

Economic benefits & challenges of hydrogen from renewables

Challenges of power systems & Potential benefits of green hydrogen

Global hydrogen development with implications on Vietnam

Suggestions for green hydrogen industry development in Vietnam

ABL Group is a leading global independent energy and marine consultancy working in energy and oceans to de-risk and drive the energy transition across renewables, maritime and oil and gas sectors.

Global Partner, Local Expert

* Includes subcontractors on 100% utilisation basis. Calculated as an average during Q2 2022.

** ABL locate many staff strategically at maritime and offshore hubs to be able to serve clients locally

Additional note: the 40 countries number is driven by our offices, in terms of locations where we have surveyors etc we cover 71 countries, a truly global footprint

ABL Group Hydrogen & Ammonia Offerings

Further information & contact: https://abl-group.com/renewable-energy-engineering-consultants/hydrogen/

Economic benefits & challenges of hydrogen from renewables

Renewables & hydrogen | Benefits & challenges

Further scale for cost reduction & gross-added value (GVA) contribution

Renewables & hydrogen | Costs & opportunities

Example of green hydrogen cost breakdown (€ per kg, electricity: €25/MWh)

Ref: NIB (2017), http://profadvanwijk.com

Electrolyser installation, CAPEX breakdown & reduction by 2050

Ref: ORE Catapult (2020)

UK offshore wind – hydrogen strategy:

Solving the integration challenge

ENERGY SYSTEM

The UK energy system requires 130TWhr to over 200TWhr hydrogen in 2050, to integrate 75GW, or more of offshore wind.

GREEN AND BLUE HYDROGEN

Green hydrogen from offshore wind costs less than blue hydrogen by 2050*, although factors including more rapid adoption of electrolysers, swings in natural gas prices, leakage of natural gas, or cheaper blue hydrogen generation technologies, could change this picture.

*Hydrogen production from natural gas with CCS might not be a necessary part of a net-zero UK energy economy in 2050.

COST REDUCTION

a significant part of energy demand. I COH PROJECTION FOR PEM ELECTROLYSER E/KG H2

Most of the cost reduction for green hydrogen from offshore wind occurs by 2030, by which point it can meet Challenges of power systems & Potential benefits of green hydrogen

Power system stability & Grid services

Grid Services Requirements:

- Grid frequency at 50 Hz
- Load demand = Electricity supply

J. Laguipo, P. Leahy, V. N. Dinh (2019) EirWind Deliverable D5.4 Report

Reduction in transients created from faults with electrolyzers in the grid

US DOE (2017) Role of Electrolyzers in Grid Services: Test Results

Power system stability & Grid services

Service Name	Abbreviation	Requirements
Fast Frequency Response	FFR	2 – 10 sec
Primary Operating Reserve	POR	5 – 15 sec
Secondary Operating Reserve	SOR	15 – 90 sec
Tertiary Operating Reserve 1	TOR1	90 sec – 5 min
Tertiary Operating Reserve 2	TOR2	5 – 20 min
Replacement Reserve – Synchronised	RRS	20 min – 1 hour
Replacement Reserve – Desynchronised	RRD	20 min – 1 hour

Operation condition	ALKE	PEME
Variable operation	0.2 sec	0.2 sec
	< 1 sec	< 1 sec
Warm start	1-5 min	< 3 sec
		< 30 sec
Cold start	2 hours	5 min
	2 hours	< 7 min

Grid service revenue

P. Pereira, P. Leahy, V. N. Dinh (2019) EirWind Deliverable D5.7 Report

Future integrated energy systems

The energy system today : linear and wasteful flows of energy, in one direction only Future EU integrated energy system : energy flows between users and producers, reducing wasted resources and money

Ref: https://energy.ec.europa.eu/topics/energy-systems-integration/eu-strategy-energy-system-integration_en

Global hydrogen development with implications on Vietnam

Domestic R,D&D in whole value chain: Most important

Cheaper electrolyser system, electrode, catalysts:

E.g. Iron and nickel (abundance on Earth), would replace precious metals ruthenium, platinum and iridium that up until now are regarded as **benchmark catalysts in the 'water-splitting' process** - <u>Source</u>

Electrolyser module for offshore production of renewable hydrogen:

(EU fund call, ID: FCH-02-6-2020, Jan 14, 2020 - <u>URL</u>, to develop & test offshore electrolyser modules of >1MW.

Start TRL = 3, Outcome TRL = 6. Challenges to be addressed by their funded projects.

Electrolyser modules **compatible with marine environment** (including stringent safety requirements, existing delivery contracts & the difficult accessibility)

Hydrogen storage:

Cost cheaper with scale, technology & efficiency improvements – by up to **40% as ammonia** & **80% as liquid hydrogen**

Green Hydrogen Hub (R&D, production, storage, ports, export)

Example: NEOM Green Hydrogen Project - Saudi Arabia

Key Features

- Futuristic mega-city, powered 4GW of wind & solar power
- Supply 650 Tons Per Day of Carbon-Free Hydrogen
- Fuel shipped as ammonia to global markets then converted back to hydrogen. Ammonia production is expected to start in 2025

ABL Group's Scope of Work

- Engineering review of FEED design
- Pre-EPC risk review to establish safety, cost and schedule risks pre-detailed design.
- EPC tendering support
- EPC tender review
- Support during detailed design and construction

Client: Air Products Ltd

Offshore & mobile hydrogen production systems

Example: ABL Group Green Hydrogen Production Barge

- Develop solution for local hydrogen production within a typical medium sized commercial port/ harbour readily installable, with minimal infrastructure, to support the adoption of hydrogen as a marine fuel.
- Validate the modelling assumptions such that other UK ports can be evaluated for suitability and roll out of the concept
- Develop barge concept designs to suit a range of demand sizes
- Further develop a selected concept detail to prepare for a future demonstration phase

Increasing green hydrogen demand & applications

Example: ABL Group Hydrogen-fuelled (Fuel Cell) Ferry

Key Features:

- Zero Emission Vessel
- Double-ended sea-going ferry, 120
 passengers & 16 cars or two trucks
- To be first Hydrogen fuel-cell powered vehicle and passenger ferry in the UK
- Working with Class and Maritime and Coastguard Agency to agree design and compliance approach in this new area.

Source: https://abl-group.com/uncategorised/first-renderings-completed-from-hydrogen-powered-vessel/

Featured in BBC: https://www.bbc.com/news/uk-scotland-61988917

Hydrogen safety standard and regulations

Example: Fuel-cell manufacturer safety representative

ABL Group acted as a Representative for

- Internal/external securing/wrapping of the PureCell ®Model 400 for transportation
- Loading and securing onto a trailer for road transportation to warehouse for boxing
- Wooden box packaging
- Lashing/securing onto a trailer for road transport to loading port in Laem Chabang
- Completed, 300 units during 2016 2020 (in Thailand)

Client: Doosan Fuelcell America

Step-by-Step Development of Hydrogen Economy

The Hydrogen Economy Journey

Suggestions for green hydrogen industry development in Vietnam

Nên tập trung:

- Phát triển công nghệ trong chuỗi giá trị: máy điện phân, xúc tác, điện cực, thiết bị lưu trữ & phân phối, thiết bị sử dụng hydrogen & ammonia. Thông qua hợp tác với các nước
- Nghiên cứu khoa học, đào tạo nhân lực đa ngành chuyên sâu
- Ban hành tiêu chuẩn an toàn, kỹ thuật
- Quy hoạch các dự án sản xuất hydrogen, nhất là sau 2035 và từ điện gió ngoài khơi, điện sóng biển
- Hỗ trợ các nhà phát triển công nghệ và dự án sản xuất tiên phong

Cần xem xét kỹ:

- Sản xuất hydrogen quy mô lớn quá sớm mà thiếu các chuẩn bị cần thiết
- Nhập khẩu toàn bộ công nghệ

Không nên:

- Sản xuất hydrogen từ điện sa thải
- Sản xuất hydrogen ở vùng thiếu nước ngọt

Further information: <u>https://abl-group.com/renewable-energy-engineering-consultants/hydrogen/</u> Contact: nguyen.dinh@owcltd.com