

Ministry of Industry and Trade

Implemented by

On behalf of:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

of the Federal Republic of Germany

Bioenergy potential in Viet Nam: Solutions from agriculture sector to meet COP26 commitments

Presenter: Assoc. Prof. Dr. Mai Van Trinh, Institute for Agricultural Environment GIZ Energy Support Programme

Ministry of Industry and Trade

On behalf of:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

of the Federal Republic of Germany

CONTENTS

- Bioenergy in agriculture
- Current status of bioenergy
- Limitations
- Solutions

Monday, April 4, 2022

Bioenergy from agriculture

- I. Plant farming
 - Rice: rice straw, rice husks
 - Corn: seeds, stems, leaves, cobs
 - Cassava: tubers, stems, leaves, dregs, peels
 - Sugarcane: stems, top, leaves, bagasse, filter cake, molasses
 - Peanut: nuts, stems, leaves, shells, meal
- II. Animal husbandry: solid and liquid waste of livestock and poultry
- III. Forestry: wood, twigs, chips, sawdust, etc.
- IV. Processing
 - Arrowroot: residues, wastewater
 - Tapioca: residues, wastewater
 - Rice noodle: wastewater
 - Slaughter: solid waste, wastewater
 - Fishery: residues, wastewater

Current status of biofuel crop production in Viet Nam

N I -				Implementation		
No.		Category	Unit	2016	2020	
1.1	Rice	- Area	1,000 ha	7,737.7	7,364	
		- Capacity	Quintals/ha	55.80	58.94	
		- Yield	1,000 tons	43,165.1	43,400	
1.2	Corn	- Area	1,000 ha	1,152.6	980	
		- Capacity	Quintals/ha	45.52	48.06	
		- Yield	1,000 tons	5,246.5	4,710	
2.2	Cassava	- Area	1,000 ha	569	520	
		- Capacity	Quintals/ha	191.73	200.56	
		- Yield	1,000 tons	10,909.7	10,429.3	
4.1	Peanut	- Area	1,000 ha	199.4	170	
		- Capacity	Quintals/ha	23.3	26	
		- Yield	1,000 tons	463.6	442	
4.2	Soybean	- Area	1,000 ha	84.60	50	
		- Capacity	Quintals/ha	14.69	15.2	
		- Yield	1,000 tons	124.3	76	
4.3	Sugarcane	- Area	1 <i>,</i> 000 ha	267.7	245	
		- Capacity	Quintals/ha	642.8	644.95	
		- Yield of sugarcane	1,000 tons	17,210.1	15,801.2	
1.1	Coffee	- Total area	1 <i>,</i> 000 ha	650.50	686	
		- Area for business	1,000 ha	635.13	630	
		- Capacity	Quintals/ha	24.44	24.77	
		- Yield of raw coffee beans	1,000 tons	1,460.8	1,699	

Monday, April 4, 2022

Capacity of products and residues of some crops (2019)

	Capacity of products and residues (million tons)						
	Rice	Corn	Peanut	Soybean	Cassava	Sugarcane	Coffee
Seed/plant/tuber	45.2	5.3	0.42	0.076	10.2	18.3	1.4
Straw	45.2						
Rice husk	8.8						
Stem		10.4	0.42	0.076			
Corn cob		1.4					
Top and leaf					3.7	9.9	
Cassava stem					4.0		
Fiber & bagasse					2.0	8.5	
Tuber peel					0.3		
Twig							5.8
Skin							3.5
Grounds							1.3
Total residues	54.02	11.8	0.42	0.076	10.0	18.4	11.6

Current status of agricultural residues

Current status of agricultural residues

Bioenergy potential of agricultural residues

• Calorific value of some key residues

No.	Type of residue	Calorific value		
		kWh/ton	MJ/ton	
1	Wood	4.07	14,650	
2	Wood waste	3.72	13,392	
3	Rice husk	3.49	12,564	
4	Rice straw	3.26	11,736	
5	Bagasse	2.15	7,740	
6	Biogas (m ³)	6.0	21.6	
7	Ethanol (m ³)	5.86	21.1	
8	Husk briquette	5,233.5	18,840.6	
9	Wood pellet	5,582.4	20,096	
10	Other biomass	3.49	12,564	

Animal husbandry and the amount of waste from animal husbandry

Livestock	Solid w	/aste, kg/anin	nal/day	Liquid kg/anim	waste, nal/day	Average per herd (2016- 2020)	Total amount of waste (million tons)	
	(1)	(2)	(3)	(2)	(3)	1,000 animals	Solid	Liquid
Pig	2.5	1.2-3.0	2.3	4-6	3.5	27,283	24.90	49.79
Poultry	0.02	0.02-0.05		-		420,336	3.07	-
Cow	10.0	15-20		6-10		6,024	26.20	17.59
Buffalo	15.0	18-25		8-12		2,481	17.70	9.06
Goat and sheep	1.5	1.5-2.5		0.6-1.0		-	-	-
Total							71.87	76.44

Biogas potential from animal husbandry

Number of main livestock, amount of livestock waste and potential biogas production in 2019

Livestock	Number of animals	Amount of waste	Total amount of waste	Percentage of volatile solids (VS)	Methane potential (Bo)	Biogas energy production (BEP)
	1,000 animals	Kg/ day/ animal	million tons/ year	Kg/ animal/ day	m ³ CH4/ kg	m ³ / year
Pig	19,615.5	2.5	49.0	0.3	0.29	15,572.3
Buffalo	2,387.9	15	35.8	3.9	0.1	8,498.0
Cow	6,060.0	10	60.6	2.8	0.13	20,128.3
Poultry	481,079	0.2	96.2	2.3	0.1	1,009,664.5
Total						1,053,863.1

Number of biogas systems built in Viet Nam

		Number of works by scale (digester)			
No.	Biogas technology	Household	Farm (medium and large)		
1	KT1 and KT2 designs	201,469	4,032		
2	Composite	89,147	2,390		
3	Other types (biogas lagoons with HDPE and PE covers, other types of construction and recycled plastics, etc.)	159,384	8,948		
	TOTAL	450,000	15,370		

Advantages: Solutions to environmental pollution, and reuse of energy

- Shortcomings: Low energy utilization rate, difficulties in grid connection
 - Instablity, dependence on livestock, markets, epidemics, etc.
 - Unclear mechanisms

Some barriers to the development of biofuel crops

- 1. Actual amount of collected agricultural residues is lower than estimation
- 2. Difficulties in and high costs of collection => high prices
- 3. Unstable income => the tendency to change crops
- 4. Land degradation (erosion, soil damages, etc.)
- Competition with imported products: Import prices are lower than domestic prices
- Change to crops with higher value and better marketability: rubber, pepper, fruit trees
- 7. Competition in usage: biomass feedstock for animal husbandry
- 8. Government policies have not substantially encouraged the development of biofuels yet.

Some barriers to the development of biofuel crops

- 9. Local development policies: Son La has replaced corn with fruit trees, vegetables, etc.
- 10. Pests: cassava mosaic disease (>40,000 ha in 2018),
- fall armyworm (>15,000 ha of corns in 2019)
- 11. Biogasoline is not popular
- 12. Levels of technology and equipment
- 13. Quality of human resources
- 14. Limited investment, research and implementation
- 15. Legal issues and international cooperation
- 16. Joint plans between MOIT and MARD

Life-cycle assessment of ethanol production from cassava in Viet Nam

Land-use change	Cultivation	Tuber transportat ion	Dicing	Stalk transportat ion	Ethanol production	Distribution	Transportation of ethanol to stations
 Cleaning up the farmland Tilling the ground Etc. 	 Fertilizers Pesticides Tending the crops Etc. 	 Distance Means of transport Losses Machines, oil 	- Machines - Oil - Etc.	 Distance Means of transport Losses Machines, oil 	 Machines Chemicals Energy Etc. 	 Distance Means of transport Losses, ethanol emission Machines, oil 	 Distance Means of transport Losses, ethanol emission Machines, oil

Greenhouse gas emission rate during production life cycle

Source: Institute for Agricultural Environment (2017)

Monday, April 4, 2022

Impacts on soil quality

Soil erosion (tons/ha/year)

Source: Institute for Agricultural Environment (2017)

Soil erosion

Monday, April 4, 2022

Solutions

- Short-term and long-term policies on developing biofuel crops, linking production with processing, and stabilizing output and prices of biofuel crops;
- 2. COP26 commitment => sectoral targets => sectoral tasks => planning and master planning
- 3. Balance between food foodstuff energy security => long-term planning of production areas
- 4. Close cooperation between the Ministry of Industry and Trade and the Ministry of Agriculture and Rural Development
- 5. Review and revision of provinces and ecological regions' master

plans

Solutions

- 7. Transfer of advanced technologies (cultivation and preliminary processing) to optimize production and boost efficiency
- 8. R&D investment: seeds, cultivation, fertilizers, collection, treatment, and reuse of by-products, etc.
- 9. Consistent production infrastructure from plants to fields, transportation
- 10. Stabilization and support for output of biofuels from agriculture, connection of biogas power to the grid, connection to carbon market

Thank you!

Mai Van Trinh

Email: maivantrinh@gmail.com Phone: 0975963668

Further information: http://gizenergy.org.vn/en/

